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A Periodic Table for Polycyclic Aromatic 
Hydrocarbons. Part V. 1 -Factorable, 2-Factorable, 
and Dewar Graph Structures Associated with 
Benzenoid Hydrocarbons 

JERRY RAY DIAS 

Department of Chemistry 
University of Missouri 
Kansas City, Missouri 64110 

A BS T R A  C T 

Further properties of a Formula Periodic Table for  Benzenoid 
PAH6s are presented. Whether the number of components of 1- 
factor and 2-factor subgraphs of benzenoid hydrocarbons are 
even o r  odd and the sign of the aN coefficient of the  character-  

istic polynomial i s  negative o r  positive are prescribed by this 
table. A method for computing the number of Dewar structures 

ac  from the aN coefficient of the acrylic polynomial is  reviewed. 
It i s  shown that a stronger correlation of resonance energy and In 

a of In KNc exists than for  In K where K = SC (structure count) =yc. It i s  conjectured that ethene i s  subspectral to all benzenoid 
PAH6 structures belonging to the Nc = O(mod 4) row series of the 

formula periodic table for  benzenoid PAHGs. 
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336 DIAS 

Previous research from this laboratory has evolved a formula 
periodic table for  PAH6s which for  the f i rs t  time unified formula/ 
structure relationships of benzenoid hydrocarbons into a systematic 
framework [l] . Herein additional correlations of this periodic table 
a r e  presented. Also, structural  relationships of the coefficients of the 
acyclic and characterist ic polynomials within the frame of this table 
are reviewed. 

D I S C U S S I O N  AND R E S U L T S  

Throughout this paper only the a-bond graph for  PAHs will be 
drawn. The emphasis and correlations presented a r e  for benzenoid 
polycyclic aromatic hydrocarbons (PAH6) or polyhexes. In the rows 
of the formula periodic table for benzenoid PAH6s (Table l), the num- 
ber of formula carbons (N ) increases from left to right according to 

the even residue classes of congruent modulo 4. For example, in the 
N = 2NH - 6 and N = 2NH - 4 row series,  the number of formula 

carbons follow N = Z(mod 4) and Nc = O(mod 4), respectively; these 
two respective relationships are each applicable for  every other row. 
In the  columns of the formula periodic table for  benzenoid PAHGs, the 
number of formula carbons increases from top to bottom according to 
the even residue classes of congruent modulo 6. In the Nc = 3NH - 14, 

N = 3NH - 16, and Nc = 3NH - 18 column ser ies ,  the number of for-  

mula carbons are given by N 4(mod 6), Nc = 2(mod 6), and Nc = 
O(mod 6), respectively; this sequence of congruent modulo 6 relation- 
ships successively repeats for  all the columns in Table 1. The basis 
for  Table 1 is that all PAH structures having a common CH formula 
must comply with ds + NIc = constant where d i s  the net number of 

disconnections (or connections) of internal edges and N is the num- 

ber of internal third degree carbon vertices. For example, anthraceiie/ 
phenanthrene have two internal edges disconnected (ds = 1) and no in- 

ternal third degree vertices (N 

perylene have all their internal edges connected (ds = 0) and four in- 
ternal third degree vertices (N 

C 

C C 

C 

C 

C 

S 

Ic 

= O), and anthanthrene/benzo(ghi)- 

= 4). 

Ic 

Ic 

G r a p h i c a l  P r o p e r t i e s  of P o l y c y c l i c  A r o m a t i c  
H y d r o c a r b o n s  

The minimum degree among the points (vertices) of graph G i s  de- 
noted by 6 (G) while A(G) is the maximum degree of G [2]. L€ all the 
points of a graph G have the same degree, then G i s  called a regular 
graph. A regular graph of degree 1 requires that every component 
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POLYCYCLIC AROMATIC HYDROCARBONS. V 337 

contain exactly one line (edge); if a graph G is regular of degree 2, 
then every component i s  a cycle (ring). Regular graphs of degree 3 
are called cubic; the planar isomorphic equivalents of the tetrahedron 
and cube are cubic graphs. Every cubic graph has an even number of 
points since Ed. = 2q; in any graph the number of odd degree points is 

even. The connectivity K = K(G) of a graph G i s  the minimum number 
of points whose removal results in a disconnected or trivial graph. 
The connectivity of a connected graph with a cutpoint is 1. The com- 
plete graph K gives only a trivial graph upon removing p - 1 points 

P 
[K(K ) = p - 11. The line connectivity A = X(G) of a graph G is the 
minimum number of lines whose removal results in a disconnected o r  
trivial graph. The line connectivity of a connected graph with a bridge 
is 1 and h(K1) = 0. For  any graph G, K(G) 5 h (G) 5 6 (G). A factor of 

a graph G i s  a spanning subgraph of G which is not totally disconnected. 
When G has a 1-factor, then p i s  even and the 1-factor lines are point 
disjoint, In general, the complete graph K is 1-factorable. A graph 

i s  2-factorable if it has spanning subgraphs that are regular of degree 
2. The complete graph KZn+l has n spanning cycles that are 2-factors. 

Girth g(G) of a graph G i s  the length of the shortest cycle of a graph, 
and circumference c(G) i s  the length of the longest cycle of G. Poly- 
cyclic conjugated hydrocarbon o-bond graphs have only second and 
third degree carbon vertices;  therefore, 6 (PAH) = 2 and A(PAH) = 3. 
The pn graphs of PAHs are regular graphs of degree 1 and can be 
derived by 1-factorization of the corresponding PAH a-bond graph, 
All PAHs are 2-connected [K(PAH) = y(PAH) = 6 (PAH) = 21, Biphenyl 
i s  1-connected with K = y = 1. Triangulene i s  a diradical PAHG and is 
not 1-factorable since it has no spanning, regular subgraph of degree 
1. Chrysene, perylene, and benzo(ghi)perylene have the following 2- 
factorable subgraphs. 
have a single 2-factor subgraph that corresponds to  their circum- 
ference the length of which is given by c(cata-PAH6) = q = 2NH - 6. 

Not all of the isomers  of the peri-condensed PAH6s are 2-factorable. 
A prerequisite for  a nonsymmetrical peri-condensed PAHG to be 2-  
factorable i s  that it must possess  a concave bay region [e.g., like 
perylene or benzo(ghi)perylene] , The symmetrical graphs of the one 
isomer series of polycircumnaphthalene and polycircumcoronene have 
2 -factor subgraphs comprised of concentric rings, whereas the one 
isomer polycircumpyrene series give graphs that do not have 2-factor 
subgraphs [ 11. Other symmetrical peri-condensed PAH6s having con- 
cave bay regions may or may not have 2-factor subgraphs. Table 2 
summarizes the 1- and 2-factorable characterist ics of some benzen- 
oid PAHs. It i s  informative to  examine the structures of C22H12 

versus CS2Hl8 (Fig. 1) and C3*H14 versus C64H20 (Figs. 2 and 3). 
Anthathrene and benzo(ghi)perylene (Cz2Hl2) a r e  the exised internal 
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The o-bond graph of all cata-condensed PAH6s 
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83 
C20H 12 
Perylene 

DIAS 

2-factorable 

c3 
2-f act0 rab le *a 

C22H 12 
Benzo(ghi)perylene 

structures of the structures of C52H18. Only benzo(ghi)perylene and 
its circumscribed derived C52H18 structure have one concave bay re- 
gion and 2-factorable subgraphs. Similarly, dibenzo(bc, ef) coronene, 
naphtho(abc)coronene, and dibenzo(bc,kl)coronene (C H ) are the 
excised internal structures of the structures of C64H20; only the first 
structures and their corresponding circumscribed derived C64H20 
structures have one concave bay region and 2-factor subgraphs. 
In general, derived PAH6 structures made by circumscribing internal 
structures have the same number of concave bay regions as their ex- 
cised internal structures. Also, derived structures have 2-factor 
subgraphs if their internal structures are 2-factorable, and the former 
have one more component than their corresponding excised internal 
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C22H 12 

Bay region -@ 
C22H 12 

2-Factorable 

Bay 
region 

C52H 18 
2-Factorable C52H 18 

FIG. 1. The two nonradical isomers of C22H12 and CS2Hl8. 

structures. From Table 2 it is evident that 2-factor subgraphs 
of structures having formulas falling in the alternate rows of Nc = 

2NH - 6, N = 2N - 2, . . . [i.e., Nc 5 2(mod 4)] of Table 1 have an 
C H 

odd number of components and a n  even number of components if they 
fall in the other set  of alternate rows [i.e., Nc O(mod 4)]. Many of 
the benzenoid graphs that are 2-factorable have only a single 2-factor 
subgraph. Examples of a few benzenoid graphs of this study that have 
three or more 2-factor subgraphs are shown in Fig. 4. In general, 
isomers having more concave bay regions are the more stable iso- 
mers  and have more 2-factor subgraphs, and a PAH graph is 2- 
factorable if its excised internal structure is 2-factorable. The cata- 
condensed PAH6 isomers having two or more (odd component) 2- 
factor subgraphs were invariably branched (Table 2). Also, the 
most branched cata-condensed PAH6s have the largest  number of 1- 
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2-Factorable 

2-Factorable 

FIG. 2. The three nonradical isomers of C30H14. 

factor subgraphs (i.e., SC) whereas the acenes have the smallest  num- 
ber of 1-factor subgraphs. 

A point and a line are said to  cover each other if and only if they 
are incident [3]. Two points o r  b o n e s  cover each other if and only 
if they are adjacent. A set of points (lines) of a graph G which covers 
all the lines (points) of G is called a point (line) cover of G. The small-  
es t  number of points (lines) is a point (line) cover is the point (line) 
covering number a (a ) of G. A set  of points (lines) of G is indepen- 
dent if no two of them a r e  adjacent. The largest number of points 
(Ilnes) in an  independent set  of points (lines) is the point (line) inde- 
pendence number of G and is denoted by Po@,). For any graph G, 

ao(G) 2 S(G), aO(G) 2 P1(G), and al(G) 2 P (G). If G is bipartite, 
a (G) = P1(G). For  any nontrivial connected graph G, a. + Po = a1 t 

0,. A clique of a graph is a maximal complete subgraph. The clique 
graph of G, K(G), is the intersection graph of the set  of cliques of G. 
For  any G, PO(G) 5 6 (G), where 0 is the minimum number of cliques 
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C26H20 C64H20 
2-F ac tora b le 

C26H20 
2-F actorable 

FIG. 3. The three nonradical isomers of C64H20. 

the union of whose vertices is V(G). The density of G, w (G), is the 
number of points in a maximum clique (maximum complete subgraph) 
o r  G. The chromatic number of G, x(G) ,  is the minimum coloring of 
G such that no two adjacent points have the same color. For  any G, 
x(G)  5 1 + A(G). If A(G) = 2 and G does not have a component corre-  
sponding to an  odd cycle o r  if A(G) 3 3 and G does not have KA+l as 
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+-0 ++ q 0 + 0 0 0 0 
C24H14 

C50H 18 

C62H20 

FIG. 4. Representative peri-condensed PAH6s and their 2-factor 
subgraphs. 

a component, then x (G) 5 A(G). If G is connected, then x (G) 5 1 + 
E where E is the maximum eigenvalue of the adjacency matrix max’ max 
of G. The genus of a graph G, y(G) is the minimum genus of a surface 
in which G can be embedded, i.e., surface curves can only intersect at 
points on the surface. Since planar graphs can be embedded on the 
surface of a sphere (or  plane), y(G) = 0 and x(G)  5 4 for  planar graphs. 
Hence, if a planar graph has an odd girth, g(G), x(G) = 3 o r  4. If G 
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cannot be embedded on a sphere but can be on a donut (torus) shaped 
surface, then y(G) = 1, and x(G) 5 7 if g = 3, x (G)  5 4 if g = 5, and 
x(G) 5 3 if g 2 6. The line chromatic number of a graph G, xl(G), is 
the minimum number of colors that can be assigned to the lines of G 
such that no two adjacent lines have the same color. For any G, A(G) 
5 xl(G) 5 A(G) + 1. These graphical properties on PAHs are illus- 

trated for  the following a-bond graphs of pyrene and azupyrene. 

(Y 0 = 8 , p  0 = 8 , a 1 = 8 , p 1 = 8  

Q = 8 ,  W =  2, x =  2, x = 3 

a o = 9 , / 3 0 = 7 , ( Y  1 = 8 , B  1 = 8  

Q = 8 ,  W =  2, x= 3, x = 3  1 1 

The smallest number of points in a point cover of pyrene (ao = 8) or 
azupyrene (ao = 9) consists of their s tarred vertices; note that ao(P) 
= 8 > 6(P) = 2. Since both pyreneand azupyrene are isomeric and 
both can be represented by Kekule structures [al(P) = al(A) and p,(P) 

= P1(A)] and only pyrene is bipartite [cro(P) = pl(P) and ao(A) > P1(A)], 

azupyrene has ao(A) = 9 > P1(A) = 8 and al(A) = 8 > PO(A) = 7. The 
only complete subgraphs of PAHs are K2 components and the minimum 
number of cliques the union of whose vertices is V(PAH) is given by 
the union of the vertices of the K2 components belonging to the 
1-factor subgraph of the PAH. Thus po(P) = B(P) = 8 and PO(A) = 7 

< Q (A) = 8. For all PAHs w = 2, and for  all even alternate PAHs x = 
2. Since pyrene is bipartite x(P) = 2, but for  azupyrene which is not 
bipartite x(A) = 3; in both cases )i 5 A(G) = 3. For pyrene and azu- 
pyrene, x(P) = 2 5 1 +em= = 3.5321 and x(A) = 3 - -= 1 +Emax = 3.5321. 
All PAHs are planar graphs of genus y = 0 and colorability of x 5 3 
where the equality in the latter is applicable when the PAH graph has  
an  odd girth like azupyrene. The line chromatic number of PAHs is 
x1 = A(G) = 3. All PAH graphs consisting of only even membered rings 
are bipartite and bichromatic. If a benzoid PAHG a-bond graph is not 
1-factorable (i.e., is a diradical), then it cannot be 2-factorable. Con- 
versely, if a PAH graph is 2-factorable1 then it is also 1-factorable. 
All benzenoid PAHG o-bond graphs with NIc = 0 (Le., cata-condensed) 
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a r e  1-factorable and 2-factorable, and all PAH graphs with NIc = 

1, 2, 3, . . . and Nc = odd number are not 1-factorable or 2-factorable. 
PAHs with Nc = even number and NIc = odd number cannot have span- 
ning 2-factor subgraphs. Whether the number of components in 1- 
factor subgraphs of benzenoid of PAH6s are even or odd is also 
determined by Table 1. All benzenoid PAH6s in the row ser ies  of 
Nc = 2(mod 4) will have a n  odd number of K2 components, and all 

benzenoid PAH6s in the row series belonging to the Nc = O(mod 4) row 
series will have an even number K2 components, In general, Fig. 5 

illustrates that for  any spanning subgraph composed of an admix of 
K2 and C2n components, whether there is an even or odd number of 
components i s  determined by the above rule. 

S t r u c t u r a l  R e l a t i o n s h i p s  of C o e f f i c i e n t s  of t h e  
A c  y c 1 i c  a n d  C h a r  a c t  e r i s t i c  P o l  y n o m  i a l  s 

Expansion of the Hiickel molecular orbital (HMO) secular deter- 
mined for  a PAH graph gives the characteristic polynominal P(G; X) 
= detIXI-A1 of the corresponding conjugated system where I is the 
identkty matrix ans A is the adjacency matrix [4]. The characteristic 
polynomial of N carbon atom system has the following form 

N 
P(G; x) = c anXNmn 

n=O 

where an are coefficients that can be alternatively obtained by the 
graphical Sachs' method. This method is summarized by the following 
formula 

where 0 5 n 5 N, s is a Sachs graph, Sn is a set  of all Sachs graphs 
with exactly n vertices, c(s) is the number of components, and r(s) i s  
the total number of rings (cycles) in s. The components of a Sachs 
graph can be either K2 or cycles Cm (m = 3, 4, . . . , N) or combina- 
tions of 1K2 and kCm such that 21 + km = n. By definition a. = 1. Since 
only K2 and Cm components are allowed, S1 = 4 and al = 0. The se t  S2 
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Triphenylene 1-factor subgraph 
9(-1)92" =-9 1 2( - 1 ) 72=-24 

' I  0 ' I  
\ '0, c3 o,, 

\ 
1 \ \ 

3(- 1 )32=-6 2-factor subgraph 2-factor subgraph 
(-1)323= -8 (-1)2 =-2 

FIG. 5. Representative spanning subgraphs of triphenylene with 
corresponding contribution factors to a18 = -K2 = -81. 

of all Sachs graphs leads to the value of a2 = -q which is equal to the 

negative number of graph edges. For  PAH6 aN = f K2, where K is 
the number of Kekule structures (1-factors); for  the PAH6s in the 
Table 1 row ser ies  of Nc = 2NH - 6 (cata-condensed PAHGs), Nc = 
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2NH - 2, N = 2N c H  
for the remaining row ser ies  of Nc = 2N 

positive sign applies (a = K2 ). 

one obtains the following formula 

+ 2, . . . the negative sign applies (aN = -K2 ) and 

- 4, N = 2NH, . . . the H C 

N 
If the components of a Sachs graph are restricted to only K2, then 

S€Sn 

ac  where 0 5 n 5 N and S 
actly N vertices. The corresponding acyclic polynomial Pac (G; X) 
is devoid of cyclic contributions and has been used to compute topo- 
logical resonance energies (TRE) through the use  of 

i s  the set  of all acyclic Sachs graphs of ex- n 

N 
TRE = E (PAH) - E~ (acyclic reference) = C gi (x. - x ac) 

71 J J  

It turns out that using Heilbronner’s formula [P(G; X) = P(G - e; X) - 
P(G - (e); X)], which i s  valid only for  polyenes along with the recur-  
sion formula [Ln = XLn - - Ln-2], which enables one to  compute the 

characteristic polynomial of linear polyenes starting with Lo = 1 and 
L1 = X, one can easily calculate the acyclic polynomial corresponding 

to any polycyclic structure [5]. The characteristic and acyclic poly- 
nomials are related as follows: 

P(G; X) - PaC(G; X) = -2zPaC(G - Cm; X) + 4 Pac 
m mdn 

where G - Cm, G - Cm - Cn, G - Cm - Cn - C 

obtained by removing successively the vertices of the cycles Cm, Cm 

+ Cn, Cm + Cn + C . . . from G and the summations are over mutually 

disjoint cycles contained in G. Equation (5)  allows one to simplify the 
computation of the characteristic polynomial of any polycyclic structure 
from the acyclic polynomial and enumeration Sachs graphs having cyclic 
components only. The last  term in the acyclic polynomial is  aNaC = iK 
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where the sign is determined by the rule cited above fo r  aN. Thus the 
last  term in (5)  i s  k(KZ - K) = *K(K - 1). All the spanning 1-factor 
and 2-factor subgraphs and other subgraphs containing both K2 and 
C4n+2 components are presented in Fig. 5 for triphenylene. From the 
results presented in these last  paragraphs, it i s  evident that important 
graph theoretical information of PAHs i s  transmitted by their 1-factor 
and 2-factor subgraphs. 

sentative PAH6s i s  presented in Table 3 and reveals a number of topo- 
logical generalizations that will now be discussed [6, 71. The coeffi- 
cient 

A comparison of the characteristic and acyclic polynomials of repre-  

is graphically insensitive to structural  changes in isomers having no 
tetragonal rings (C4). Thus the Cl4HI0 isomers of anthracene and 

phenanthrene have the same a4 = 98 and the C18H12 isomers have the 
same a = 180 [6]. In general, for benzenoid PAHGs, 4 

The difference in the polynomial coefficients of various PAH iosmers 
progressively increases for lower powers of X and are,  therefore, 
more sensitive to structural  changes among isomers. Differences in 
the aN coefficient of various isomeric structures are significant 
and convey important structural  information. This coefficient is made 

up of two primary contributions; an acyclic contribution (a 
An outline for the inductive cyclic one (aN-2); aN-2 = aN-2 + aN-2. 

derivation for  the acyclic contribution now follows. Consider the two 
Kekule structures for  benzene (K = 2). Deletion of one of the double 
bonds, one at  a time for  each Kekule structure, gives the following six 
graphs which are equal to  K(Nc/2) = 2(6/2) = 6. 

- 
a c  ) and a N-2 

C ac  C 

The following additional graphs correspond to  Dewar structures. 
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Thus, in general, the acyclic polynomial aac coefficient i s  given by N-2 

ac 

where K is the number of unexcited or  Kekule structures (structure 
count) and D is the number of f i r s t  excited or Dewar structures [ 7 ]  . 
Equation (6) is important and shows that excited graph structures 
make contributions to the polynomial coefficients. The Wheland 
Polynomial can be employed to determine the canonical structures 
of each degree of excitation, including the values of K and D, for 
polyenes, cata-condensed PAHs, and related composite structures 
[8]. However, determination of these quantities on peri-condensed 
PAHs i s  not obvious and considerably more difficult. Instead, deter-  

mination of aN-2 and aNaC via the acyclic polynomial and using Eq. 
(6) to determine the value of D i s  far more expeditious; in this com- 
putational procedure one can immediately discard all te rms  having 
powers larger  than two, thereby vastly reducing the arithmetic. By 
this method the number of Dewar structures associated with pyrene, 
a peri-condensed PAHG, was quickly determined to be D = 87. The 
characteristic and acyclic polynomials for the isomers of naphthalene 

are listed in Table 3. From their a 
termined that D = 16, 21, 17, and 19 for  naphthalene, azulene, bicyclo- 
[6.2.0] decapentaene, and bicycle[?. 1.01 decapentaene, respectively, 
which was verified by manually writing out all these Dewar structures.  
Annulenes also obey Eq. (6). 

It has been shown that a strong correlation between In K and reso- 
nance energy (RE) exists [g] . It i s  now shown that an  even better 
correlation between In a and RE exists. Table 4 compares the 
RE of representative PAH6s with the various logarithm quantities. 
The correlation coefficient for  comparison of the Huckel molecular 

orbital RE for  In aNm2, In aN,2, and In [f(nc/2] are all better than 

the correlation coefficient for  In K versus  HMO-RE, The correlation 
coefficient fo r  In K versus  SCF-MO-RE is  artificially higher because 
In K does not differentiate between the compounds biphenyl o r  anthra- 
cene and phenanthrene o r  naphthacene having the largest  disparity in 
RE values between the HMO and SCF-MO computational methods. The 
higher correlation associated with In aN-2 and RE i s  in agreement with 

one's intuition. Structure count (SC = K) multiplied by the s ize  of the 
PTI -system (KNc/2) should be a better relative measure than just s t ruc-  
ture  count for  the ability of a molecular species to disperse electron 
density. Also, it i s  reasonable to  expect that the number of f i rs t  ex- 

ac 

ac  ac and a10 values, it was de- 
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cited state structures (D) would be an additional but lesser factor in 
pn electronic processes. Though the correlation of In [KNc/2] ver-  
sus  RE is less than In aNm2 versus RE, it represents a compromise 
which still retains the simplicity and computation speed associated 
with In K versus RE but with an improved correlation coefficient when 
comparing molecular systems of different sizes. Fo r  example, a re- 
cent application of SC resonance theory in correlating partial ra te  
factors of protodetritiation of helicenes of different molecular size 
can give a noticeable improvement in the correlation coefficient by 
using In [EcNc/2] instead of In K [ 101, 

Isospectral molecular graphs are nonidentical isomeric structures 
which possess the same spectrum of eigenvalues [ll] . Although iso- 
spectral molecules have the same characteristic polynomial, they were 
found to have different acyclic polynomials with nonidentical co- 
efficients [12]. This suggests that the acyclic polynomial of PAH 
molecules might be used a s  unique topological index for correlation 
of corresponding molecular properties and for computer storage and 
retrieval. Since the SC of the isospectral molecules studied were 
identical, it is now apparent that the difference in aac arises from a 

different number of Dewar structures associated with isospectral 
molecules. 

N-2 

The acyclic and characteristic polynomials are monic polynomials 
ac 

(ao = a. = 1) with integral coefficients over the field of real num- 
bers [12]. All rational zeros of the acyclic and characteristic poly- 
nomials must be integral and divisors of aN and aN, respectively. 
Thus the  only integers possible for the eigenvalues of PAHs graphs 
are -2, -1, 1, 2. Since all  values of the aNaC and aN coefficients are 
divisible by 1 (and -1) whereas only even values are divisible by 2 
(and -2), there i s  a greater likelihood of 1 occurring as a rational 
zero for those polynomials. All the acenes of the cata-condensed 
PAH6s have a t  least one pair  of eigenvalues E = i1 but most of the 
other cata-condensed isomers do not [ 131. Benzo(ghi)perylene has 
one pair of eigenvalues of E = i l  whereas anthanthrene does not. All 
of PAH6s structures of the formulas C16H10, C20H12, C24H14, C24H12, 
C28H14, and C32H14 found in the Nc = 2NH - 4, Nc = 2N , and Nc = 

2N 

values of E = i l  [6, 131. These empirical observations suggest that 
all benzenoid PAH6s belonging to the Nc 

Table 1 will always have eigenvalues of E = k l .  

a c  

H 
+ 4 row series were found to have at least one pair of eigen- 

O(mod 4) row ser ies  in 

H 
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C O N C L U S I O N  

The formula periodic table for  polycyclic aromatic hydrocarbons 
(Table 1) prescribes that the number of components of 1-factorable 
and 2-factorable graphs of PAH6s belonging to the row ser ies  
Nc = 2(mod 4) or  Nc 3 O(mod 4) will be odd or even, respectively. This 

table a lso prescribes the sign of the coefficients in the acyclic and 

characteristic polynomials; fo r  example, the sign of the aN 
coefficients a r e  negative o r  positive for PAH6s belonging to the 
Nc 3 2(mod 4) or N = O(mod 4) row series,  respectively. Based on 

empirical observations, it is  conjectured that all benzenoid PAH6 
graphs belonging to the row ser ies  of Nc 3 O(mod 4) of Table 1 must 

have at least one pair of eigenvalues associated with the correspond- 
ing adjacency matrix having values of E = *l. Dewarlike structures 

have been shown to make a contribution to the aN-2 and aN-2 coeffi- 

cients [ T I ,  and there i s  a strong correlation between resonance energy 
and the logarithm of these quantities. 

ac and aN 

C 

ac  
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